Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Healthc Mater ; : e2304150, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554019

RESUMO

D-mannose is widely used as non-antibiotic treatment for bacterial urinary tract infections. This application is based on a well-studied mechanism of binding to the type 1 bacterial pili and, therefore, blocking bacteria adhesion to the uroepithelial cells. To implement D-mannose into carrier systems, the mechanism of action of the sugar in the bladder environment is also relevant and requires investigation. Herein, two different MANNosylation strategies using mesoporous silica nanoparticles (MSNs) are described. The impact of different chemical linkers on bacterial adhesion and bladder cell response is studied via confocal microscopy imaging of the MSN interactions with the respective organisms. Cytotoxicity is assessed and the expression of Toll-like receptor 4 (TLR4) and caveolin-1 (CAV-1), in the presence or absence of simulated infection with bacterial lipopolysaccharide (LPS), is evaluated using the human urinary bladder cancer cell line T24. Further, localisation of the transcription factor NF-κB due to the MANNosylated materials is examined over time. The results show that MANNosylation modifies bacterial adhesion to the nanomaterials and significantly affects TLR4, caveolin-1, and NF-κB in bladder cells. These elements are essential components of the inflammatory cascade/pathogens response during urinary tract infections. These findings demonstrate that MANNosylation is a versatile tool to design hybrid nanocarriers for targeted biomedical applications.

3.
Chemosphere ; 353: 141463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423146

RESUMO

Amidst the global plastic pollution crisis, the gastrointestinal tract serves as the primary entry point for daily exposure to micro- and nanoplastics. We investigated the complex dynamics between polystyrene micro- and nanoplastics (PS-MNPs) and four distinct human colorectal cancer cell lines (HT29, HCT116, SW480, and SW620). Our findings revealed a significant size- and concentration dependent uptake of 0.25, 1, and 10 µm PS-MNPs across all cell lines, with HCT116 cells exhibiting the highest uptake rates. During cell division, particles were distributed between mother and daughter cells. Interestingly, we observed no signs of elimination from the cells. Short-term exposure to 0.25 µm particles significantly amplified cell migration, potentially leading to pro-metastatic effects. Particles demonstrated high persistence in 2D and 3D cultures, and accumulation in non-proliferating parts of spheroids, without interfering with cell proliferation or division. Our study unveils the disturbing fact of the persistence and bioaccumulation of MNPs in colorectal cancer cell lines, key toxicological traits under REACH (Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals). Our observations underscore the potential of MNPs as hidden catalysts for tumor progression, particularly through enhancing cell migration and possibly fueling metastasis - a finding that sheds light on a significant and previously underexplored area of concern.


Assuntos
Neoplasias Colorretais , Poluentes Químicos da Água , Humanos , Microplásticos/metabolismo , Plásticos/toxicidade , Poliestirenos/metabolismo , Divisão Celular , Movimento Celular , Poluentes Químicos da Água/metabolismo
4.
Toxicol Lett ; 394: 1-10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403206

RESUMO

Risk assessment of food and environmental contaminants is faced by substantial data gaps and novel strategies are needed to support science-based regulatory actions. The Alternaria mycotoxins alternariol (AOH) and altertoxin II (ATXII) have garnered attention for their possible genotoxic effects. Nevertheless, data currently available are rather scattered, hindering a comprehensive hazard characterization. This study combined in vitro/in silico approaches to elucidate the potential of AOH and ATXII to induce double-strand breaks (DSBs) in HepG2 cells. Furthermore, it examines the impact of co-exposure to AOH and the DSB-inducing drug doxorubicin (Doxo) on γH2AX expression. AOH slightly increased γH2AX expression, whereas ATXII did not elicit this response. Interestingly, AOH suppressed Doxo-induced γH2AX expression, despite evidence of increased DNA damage in the comet assay. Building on these observations, AOH was postulated to inhibit γH2AX-forming kinases. Along this line, in silico analysis supported AOH potential interaction with the ATP-binding sites of these kinases and immunofluorescence experiments showed decreased intracellular phosphorylation events. Similarly, in silico results suggested that ATXII might also interact with these kinases. This study emphasizes the importance of understanding the implications of AOH-induced γH2AX expression inhibition on DNA repair processes and underscores the need for caution when interpreting γH2AX assay results.


Assuntos
Benzo(a)Antracenos , Micotoxinas , Micotoxinas/toxicidade , Micotoxinas/metabolismo , Alternaria/metabolismo , Dano ao DNA , Lactonas/toxicidade , Lactonas/metabolismo , Transdução de Sinais
5.
Arch Toxicol ; 98(3): 999-1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212450

RESUMO

Harmful algal blooms kill fish populations worldwide, as exemplified by the haptophyte microalga Prymnesium parvum. The suspected causative agents are prymnesins, categorized as A-, B-, and C-types based on backbone carbon atoms. Impacts of P. parvum extracts and purified prymnesins were tested on the epithelial rainbow trout fish gill cell line RTgill-W1 and on the human colon epithelial cells HCEC-1CT. Cytotoxic potencies ranked A > C > B-type with concentrations spanning from low (A- and C-type) to middle (B-type) nM ranges. Although RTgill-W1 cells were about twofold more sensitive than HCEC-1CT, the cytotoxicity of prymnesins is not limited to fish gills. Both cell lines responded rapidly to prymnesins; with EC50 values for B-types in RTgill-W1 cells of 110 ± 11 nM and 41.5 ± 0.6 nM after incubations times of 3 and 24 h. Results of fluorescence imaging and measured lytic effects suggest plasma membrane interactions. Postulating an osmotic imbalance as mechanisms of toxicity, incubations with prymnesins in media lacking either Cl-, Na+, or Ca2+ were performed. Cl- removal reduced morphometric rearrangements observed in RTgill-W1 and cytotoxicity in HCEC-1CT cells. Ca2+-free medium in RTgill-W1 cells exacerbated effects on the cell nuclei. Prymnesin composition of different P. parvum strains showed that analog composition within one type scarcely influenced the cytotoxic potential, while analog type potentially dictate potency. Overall, A-type prymnesins were the most potent ones in both cell lines followed by the C-types, and lastly B-types. Disturbance of Ca2+ and Cl- ionoregulation may be integral to prymnesin toxicity.


Assuntos
Colestenos , Haptófitas , Lipoproteínas , Animais , Humanos , Brânquias , Linhagem Celular , Células Epiteliais , Colo
7.
Biomed Pharmacother ; 170: 115942, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042111

RESUMO

Bladder cancer cells possess unique adaptive capabilities: shaped by their environment, cells face a complex chemical mixture of metabolites and xenobiotics accompanied by physiological mechanical cues. These responses might translate into resistance to chemotherapeutical regimens and can largely rely on autophagy. Considering molecules capable of rewiring tumor plasticity, compounds of natural origin promise to offer valuable options. Fungal derived metabolites, such as bafilomycin and wortmannin are widely acknowledged as autophagy inhibitors. Here, their potential to tune bladder cancer cells´ adaptability to chemical and physical stimuli was assessed. Additionally, dietary occurring mycotoxins were also investigated, namely deoxynivalenol (DON, 0.1-10 µM) and fusaric acid (FA, 0.1-1 mM). Endowing a Janus' face behavior, DON and FA are on the one side described as toxins with detrimental health effects. Concomitantly, they are also explored experimentally for selective pharmacological applications including anticancer activities. In non-cytotoxic concentrations, bafilomycin (BAFI, 1-10 nM) and wortmannin (WORT, 1 µM) modified cell morphology and reduced cancer cell migration. Application of shear stress and inhibition of mechano-gated PIEZO channels reduced cellular sensitivity to BAFI treatment (1 nM). Similarly, for FA (0.5 mM) PIEZO1 expression and inhibition largely aligned with the modulatory potential on cancer cells motility. Additionally, this study highlighted that the activity profile of compounds with similar cytotoxic potential (e.g. co-incubation DON with BAFI or FA with WORT) can diverge substantially in the regulation of cell mechanotransduction. Considering the interdependence between tumor progression and response to mechanical cues, these data promise to provide a novel viewpoint for the study of chemoresistance and associated pathways.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Mecanotransdução Celular , Wortmanina/farmacologia , Autofagia , Antineoplásicos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Canais Iônicos
8.
Nat Commun ; 14(1): 8210, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097563

RESUMO

Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.


Assuntos
Microbioma Gastrointestinal , Inulina , Inulina/metabolismo , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias , Prebióticos
9.
Toxins (Basel) ; 15(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38133174

RESUMO

Humans are constantly exposed to mixtures of different xenobiotics through their diet. One emerging concern is the Alternaria mycotoxin alternariol (AOH), which can occur in foods typically contaminated by the process contaminant acrylamide (AA). AA is a byproduct of the Maillard reaction produced in carbohydrate-rich foods during thermal processing. Given the genotoxic properties of AOH and AA as single compounds, as well as their potential co-occurrence in food, this study aimed to assess the cytotoxic, genotoxic, and mutagenic effects of these compounds in combination. Genotoxicity was assessed in HepG2 cells by quantifying the phosphorylation of the histone γ-H2AX, induced as a response to DNA double-strand breaks (DSBs). Mutagenicity was tested in Salmonella typhimurium strains TA98 and TA100 by applying the Ames microplate format test. Our results showed the ability of AOH and AA to induce DSBs and increase revertant numbers in S. typhimurium TA100, with AOH being more potent than AA. However, no synergistic effects were observed during the combined treatments. Notably, the results of the study suggest that the compounds exert mutagenic effects primarily through base pair substitutions. In summary, the data indicate no immediate cause for concern regarding synergistic health risks associated with the consumption of foods co-contaminated with AOH and AA.


Assuntos
Micotoxinas , Humanos , Micotoxinas/toxicidade , Mutagênicos/toxicidade , Alternaria , Dano ao DNA , Lactonas/toxicidade , Acrilamidas
10.
Cell Commun Signal ; 21(1): 307, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904178

RESUMO

Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.


Assuntos
Retículo Endoplasmático , Bexiga Urinária , Humanos , Estresse do Retículo Endoplasmático , Citoesqueleto , Tapsigargina/farmacologia
11.
Nano Lett ; 23(16): 7758-7766, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37433061

RESUMO

The intestinal compartment ensures nutrient absorption and barrier function against pathogens. Despite decades of research on the complexity of the gut, the adaptive potential to physical cues, such as those derived from interaction with particles of different shapes, remains less understood. Taking advantage of the technological versatility of silica nanoparticles, spherical, rod-shaped, and virus-like materials were synthesized. Morphology-dependent interactions were studied on differentiated Caco-2/HT29-MTX-E12 cells. Contributions of shape, aspect ratio, surface roughness, and size were evaluated considering the influence of the mucus layer and intracellular uptake pathways. Small particle size and surface roughness favored the highest penetration through the mucus but limited interaction with the cell monolayer and efficient internalization. Particles of a larger aspect ratio (rod-shaped) seemed to privilege paracellular permeation and increased cell-cell distances, albeit without hampering barrier integrity. Inhibition of clathrin-mediated endocytosis and chemical modulation of cell junctions effectively tuned these responses, confirming morphology-specific interactions elicited by bioinspired silica nanomaterials.


Assuntos
Mucosa Intestinal , Nanopartículas , Humanos , Células CACO-2 , Mucosa Intestinal/metabolismo , Dióxido de Silício/metabolismo , Transporte Biológico
12.
Cell Commun Signal ; 21(1): 112, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189133

RESUMO

BACKGROUND: Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS: Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION: Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.


Assuntos
Bacillus cereus , Enterotoxinas , Humanos , Enterotoxinas/análise , Enterotoxinas/metabolismo , Bacillus cereus/metabolismo , Células CACO-2 , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
13.
Arch Toxicol ; 97(6): 1659-1675, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37117602

RESUMO

Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.


Assuntos
Mecanotransdução Celular , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidade , Ácido Palmítico/metabolismo , Proteômica , Ácidos Graxos , Ácido Oleico/metabolismo
14.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050585

RESUMO

Staphylococcus epidermidis (S. epidermidis) belongs to methicillin-resistant bacteria strains that cause severe disease in humans. Herein, molecularly imprinted polymer (MIP) nanoparticles resulting from solid-phase synthesis on entire cells were employed as a sensing material to identify the species. MIP nanoparticles revealed spherical shapes with diameters of approximately 70 nm to 200 nm in scanning electron microscopy (SEM), which atomic force microscopy (AFM) confirmed. The interaction between nanoparticles and bacteria was assessed using height image analysis in AFM. Selective binding between MIP nanoparticles and S. epidermidis leads to uneven surfaces on bacteria. The surface roughness of S. epidermidis cells was increased to approximately 6.3 ± 1.2 nm after binding to MIP nanoparticles from around 1 nm in the case of native cells. This binding behavior is selective: when exposing Escherichia coli and Bacillus subtilis to the same MIP nanoparticle solutions, one cannot observe binding. Fluorescence microscopy confirms both sensitivity and selectivity. Hence, the developed MIP nanoparticles are a promising approach to identify (pathogenic) bacteria species.


Assuntos
Impressão Molecular , Nanopartículas , Humanos , Polímeros/química , Impressão Molecular/métodos , Nanopartículas/química , Polímeros Molecularmente Impressos , Microscopia de Força Atômica
15.
J Crohns Colitis ; 17(9): 1514-1527, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36961872

RESUMO

INTRODUCTION: Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS: UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS: Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION: The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.

16.
Arch Toxicol ; 97(1): 217-233, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214828

RESUMO

Bladder cells are constantly exposed to multiple xenobiotics and bioactive metabolites. In addition to this challenging chemical environment, they are also exposed to shear stress originating from urine and interstitial fluids. Hence, physiological function of bladder cells relies on a high biochemical and biomechanical adaptive competence, which, in turn, is largely supported via autophagy-related mechanisms. As a negative side of this plasticity, bladder cancer cells are known to adapt readily to chemotherapeutic programs. At the molecular level, autophagy was described to support resistance against pharmacological treatments and to contribute to the maintenance of cell structure and metabolic competence. In this study, we enhanced autophagy with rapamycin (1-100 nM) and assessed its effects on the motility of bladder cells, as well as the capability to respond to shear stress. We observed that rapamycin reduced cell migration and the mechanical-induced translocation potential of Krüppel-like transcription factor 2 (KLF2). These effects were accompanied by a rearrangement of cytoskeletal elements and mitochondrial loss. In parallel, intracellular acetylation levels were decreased. Mechanistically, inhibition of the NAD + -dependent deacetylase sirtuin-1 (SIRT1) with nicotinamide (NAM; 0.1-5 mM) restored acetylation levels hampered by rapamycin and cell motility. Taken together, we described the effects of rapamycin on cytoskeletal elements crucial for mechanotransduction and the dependency of these changes on the mitochondrial turnover caused by autophagy activation. Additionally, we could show that targeted metabolic intervention could revert the outcome of autophagy activation, reinforcing the idea that bladder cells can easily adapt to multiple xenobiotics and circumvent in this way the effects of single chemicals.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Mecanotransdução Celular , Acetilação , Xenobióticos/metabolismo , Autofagia , Neoplasias da Bexiga Urinária/metabolismo , Sirtuína 1/metabolismo , Sirolimo/farmacologia
17.
Front Toxicol ; 4: 977147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353200

RESUMO

Mycotoxins produced by Alternaria spp. act genotoxic in cell-based studies, but data on their toxicity in vivo is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex Alternaria toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.21 mg/kg bw) or vehicle by gavage, one of the most genotoxic metabolites in vitro and were sacrificed after 3 or 24 h, respectively. Using SDS-PAGE/Western Blot, a significant increase of histone 2a.X phosphorylation and depletion of the native protein was observed for rats that were exposed to ATX-II for 24 h. Applying RT-PCR array technology we identified genes of interest for qRT-PCR testing, which in turn confirmed an induction of Rnf8 transcription in the colon of rats treated with ATX-II for 3 h and CE for 24 h. A decrease of Cdkn1a transcription was observed in rats exposed to ATX-II for 24 h, possibly indicating tissue repair after chemical injury. In contrast to the observed response in the colon, no markers for genotoxicity were induced in the liver of treated animals. We hereby provide the first report of ATX-II as a genotoxicant in vivo. Deviating results for similar concentrations of ATX-II in a natural Alternaria toxin mixture argue for substantial mixture effects.

18.
Langmuir ; 38(48): 14928-14940, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420863

RESUMO

Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.


Assuntos
Progéria , Ratos , Animais , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Microscopia de Força Atômica , Miócitos Cardíacos , Fenômenos Biomecânicos , Fibroblastos/metabolismo , Mutação
19.
Front Nutr ; 9: 882222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811943

RESUMO

The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces "chemical cocktails" composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.

20.
Toxicol Appl Pharmacol ; 446: 116034, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461954

RESUMO

In order to ensure barrier function, intestinal cells need to respond promptly to biomechanical stimulation and to adapt constantly to physical cues. To this aim, cell membranes are essential and rely extensively on lipid metabolism and turnover. These can be tuned via nutrition, pharmacological treatment, or exposure to xenobiotics, however, knowledge on the impact of lifestyle and diet on intestinal cells' biomechanical compliance is relatively limited. Building on this, two intestinal cell models (non-transformed human colon epithelial cells HCEC-1CT and the colon adenocarcinoma cell line HT-29) were systematically compared in terms of cholesterol content, membrane fluidity, actin cytoskeletal organization, expression of mechano-gated PIEZO1 channels and caveolin-1. Biomechanical compliance was evaluated with the application of fluid shear stress (force response 0.75-1.5 dyn/cm2). As model substances the food contaminant mycotoxin alternariol (AOH, 0.01-10 µM) was chosen in virtue of its putative structural analogy with cholesterol. AOH was compared to the cholesterol lowering agent lovastatin (LOVA, 0.01-10 µM) and to water-soluble cholesterol (MßCD-CHOL, 0.01-10 µg/ml). Exposure to AOH, LOVA and MßCD-CHOL coherently modulated membrane cholesterol, expression of PIEZO1 and caveolin-1 as well as the formation of actin stress fibers. These effects were functionally relevant since they modified the force response profile to fluid shear stress (morphological adaption and [Ca2+]i). In sum, we could demonstrate a novel role for exogenous or endogenous molecules in shaping intestinal mechanotransduction via regulation of cholesterol homeostasis and plasma membrane architecture.


Assuntos
Adenocarcinoma , Membrana Celular , Neoplasias do Colo , Mucosa Intestinal , Mecanotransdução Celular , Actinas/metabolismo , Adenocarcinoma/metabolismo , Caveolina 1/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Neoplasias do Colo/metabolismo , Contaminação de Alimentos , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Canais Iônicos/metabolismo , Lactonas/farmacologia , Mecanotransdução Celular/fisiologia , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...